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The Bayesian Change Point and Variable
Selection Algorithm: Application to the δ18O

Proxy Record of the Plio-Pleistocene

Eric RUGGIERI and Charles E. LAWRENCE

In this article, we introduce the Bayesian change point and variable selection algo-
rithm that uses dynamic programming recursions to draw direct samples from a very
high-dimensional space in a computationally efficient manner, and apply this algorithm
to a geoscience problem that concerns the Earth’s history of glaciation. Strong evidence
exists for at least two changes in the behavior of the Earth’s glaciers over the last five
million years. Around 2.7 Ma, the extent of glacial cover on the Earth increased, but
the frequency of glacial melting events remained constant at 41 kyr. A more dramatic
change occurred around 1 Ma. For over three decades, the “Mid-Pleistocene Transition”
has been described in the geoscience literature not only by a further increase in the
magnitude of glacial cover, but also as the dividing point between the 41 kyr and the
100 kyr glacial worlds. Given such striking changes in the glacial record, it is clear that
a model whose parameters can change through time is essential for the analysis of these
data. The Bayesian change point algorithm provides a probabilistic solution to a data
segmentation problem, while the exact Bayesian inference in regression procedure per-
forms variable selection within each regime delineated by the change points. Together,
they can model a time series in which the predictor variables as well as the parameters of
the model are allowed to change with time. Our algorithm allows one to simultaneously
perform variable selection and change point analysis in a computationally efficient man-
ner. Supplementary materials including MATLAB code for the Bayesian change point
and variable selection algorithm and the datasets described in this article are available
online or by contacting the first author.

Key Words: Direct posterior sampling; Dynamic programming recursions; Exact
Bayesian inference in regression (EBIR); Mid-Pleistocene Transition; Glacial dynamics;
Regression.

1. INTRODUCTION

The Earth’s ice sheets have been melting and reforming for millions of years. Since the
most abundant isotope of oxygen, 16O, more readily evaporates from the oceans and falls
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88 E. RUGGIERI AND C. E. LAWRENCE

as snow in the polar regions than a heavier isotope, 18O, an increase in glacial ice will cause
the concentration of 18O in the oceans to increase relative to 16O. Geoscientists capitalize
on the resulting changes in the isotopic ratios of oxygen in the ocean to create a δ18O
ice volume proxy record from ocean sediment cores, which quantifies the amount of ice
on the Earth at a specific time in the past (Hays, Imbrie, and Shackleton 1976; Imbrie and
Imbrie 1980; Lisiecki and Raymo 2005; among others). Thus, the δ18O record provides a
way to study the patterns of glacial growth and destruction through time.

The Earth has undergone a gradual, but substantial cooling over the last five million
years. This cooling engendered the formation of more permanent ice sheets over the
Northern Hemisphere around 2.7 million years ago (Ma), reflected by an obvious increase
in the amplitude of the δ18O proxy values from ocean sediment cores (Lisiecki and Raymo
2005). Further cooling of the Earth likely contributed to the Mid-Pleistocene Transition
(MPT; Raymo 1997; Tziperman and Gildor 2003; Raymo, Lisiecki, and Nisancioglu 2006)
around 1 Ma. During the MPT, not only there was a further increase in the amplitude of
the δ18O proxy values, but also the periodicity of the glacial cycles apparently changed
from 41 to 100 thousand years (kyr), sparking much debate in the geoscience literature
and spawning several alternative models to explain this event. Imbrie and Imbrie (1980)
noted this phenomenon, concluding that “to understand these long climatic records, it may
be necessary to use models whose parameters vary with time”—indicating the existence of
change points in the system. While the intensification of Northern Hemisphere glaciations
and the MPT are two striking examples of distinct model changes, there may well be
other unreported changes that are also important to the Earth’s climate history. Thus, when
modeling how ice sheets respond to changes in solar insolation, their perceived forcing
function (Milankovitch 1941/1969), the inference challenges are to infer the number and
timing of change points, the appropriate model in each regime, and the parameters of these
models.

This problem lives on a discrete high-dimensional space. There are >1.2 × 1017 different
ways to place just six change points in the 2115 data points of the δ18O proxy record
(Lisiecki and Raymo 2005) before any considerations for variable selection are made. In
general, given N data points, there are approximately

(
N
k

)
ways to delineate k+1 regimes

through the placement of k change points. In addition, given m variables, there are 2m

combinations of variables to select from within each regime. Therefore, brute-force attempts
to study the δ18O proxy record are futile. To address these challenges in the study of
the Earth’s dynamic ice sheets, we introduce the Bayesian change point and variable
selection algorithm, an algorithm that employs dynamic programming-like recursions to
draw samples directly from this high-dimensional joint posterior space. Change point
analysis seeks an answer to the question of when the Earth’s glacial systems have undergone
regime changes, while variable selection seeks to infer which of several proposed predictor
variables or combinations of them apply in each regime. Each climate regime detected
by the algorithm is independently fit by a regression model using the predictors identified
through the variable selection procedure.

Frequentist solutions to the change point problem in regression are often obtained by
minimizing squared error or through likelihood ratio tests. For example, Tibshirani and
Wang (2008) described the fused Lasso, a procedure designed to find the least-squares
change point solution subject to an L1 penalty function. Olshen et al. (2004) introduced
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BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 89

circular binary segmentation, which is a modification of the traditional binary segmentation
algorithm that estimates the location of change points via a likelihood ratio statistic. The
algorithm is efficient, O(NlogN), because it iteratively divides the dataset according to the
change points, but since the algorithm is greedy, there is no guarantee of finding the optimal
solution. On the other hand, Muggeo and Adelfino (2011) searched for change points in
comparative genomic hybridization (CGH) data using a piecewise constant model. They
transformed the data into a cumulative sum, which is piecewise continuous, and then used
an iterative model (Muggeo 2008) to identify the locations of the change points, subject to
refinement. The R packages “strucchange” (Zeileis et al. 2002) and “changepoint” (Killick
and Eckley 2011) implement several of the mainstream frequentist change point methods.

Additionally, dynamic programming has previously been employed in the frequentist
setting to find guaranteed optimal solutions to high-dimensional change point problems as
it reduces the O(Nk) calculation on the location of change points to a quadratic calculation
O(N2) (Hawkins 1976, 2001; Auger and Lawrence 1989; Bai and Perron 2003; Ruggieri
et al. 2009). The downside to these algorithms is that they are unable to quantify the
uncertainty associated with their solutions, both in the number and in the locations of the
change points. Our Bayesian approach to the change point problem is designed to remedy
these limitations.

As for Bayesian algorithms, Barry and Hartigan (1993) introduced the product partition
model and developed an exact, recursive solution that is O(N3). Parameter values are
estimated using the probabilities that a “block” of the data is included in the partition.
Barry and Hartigan (1993) also introduced a more efficient [O(N)] Markov chain Monte
Carlo (MCMC) approach to the change point problem, but their work was limited to
detecting changes in the mean.

To date, Gibbs sampling (e.g., Carlin, Gelfand, and Smith 1992; Stephens 1994; Western
and Kleykamp 2004) and MCMC (e.g., Barry and Hartigan 1993; Green 1995; Lavielle and
Lebarbier 2001; Erdman and Emerson 2008) approximations have dominated probabilistic
solutions to the change point problem. Carlin, Gelfand, and Smith (1992) developed a
method for detecting a single change point, while both Stephens (1994) and Western and
Kleykamp (2004) could detect multiple change points for a general regression model. Green
(1995) introduced the reversible jump MCMC that can jump between parameter spaces of
differing dimensionality, while Lavielle and Lebarbier (2001) focused on finding changes
in the mean. Chopin (2007) noted that “MCMC samples for change point models typically
have a O(N2) computational cost, while their convergence properties tend to deteriorate for
larger values of N .” More recently, Erdman and Emerson (2008) developed an O(N) (per
iteration) MCMC procedure based on the product partition model of Barry and Hartigan
(1993). An MCMC algorithm that is O(N) per iteration becomes of O(I × N), where I is the
number of iterations. However, “bcp” is limited to detecting changes in the mean. Although
there have been many heuristics developed to identify the number of iterations required to
achieve convergence, in all but a few special cases the convergence of MCMC algorithms,
including those developed for the change point problem, cannot be assured.

Recursive dynamic programming-like algorithms that employ recursions to complete
sums required to marginalize over high-dimensional discrete variables provide a means to
guarantee convergence. The most famous of these, the hidden Markov model (HMM), has
also been used to solve the change point problem in a probabilistic setting (Chib 1998;
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90 E. RUGGIERI AND C. E. LAWRENCE

Pesaran, Pettenuzzo, and Timmermann 2006). The transition from one state to another in
an HMM is similar to the placement of a change point, while the emissions of an HMM
are representative of the predictions of a regression model. However, HMMs are predicated
on the recurrence of each emission model an unknown number of times. As a result, its
emission models are not local to any given data substring or regime. Moreover, in the
oft-cited algorithm of Chib (1998), the number of regimes must be prespecified. Given k
change points, Chib reparameterized the change point model in terms of a unidirectional
HMM that is required to begin in state 1 and terminate in state k+1. A prior that imposes
a specified number of change points can lead to potentially undesirable behavior at the
end of the sample (Koop and Potter 2009). Koop and Potter (2007, 2009) developed
extensions of Chib (1998) that allow for an unknown number of breaks, most recently by
developing a more noninformative uniform prior. Additionally, the parameters of an HMM
cannot be estimated or inferred within the recursion itself and are typically estimated
via the iterative Baum–Welch algorithm. Because these models may have multiple local
modes, their convergence cannot be assured. In contrast, since each regime in a change
point problem is described by its own set of parameters (thus they are all local), dynamic
programming recursions are available to assure convergence to global optima in frequentist
settings, or to permit direct inferences in Bayesian settings, in a single pass through the data.
HMMs can be extended to avoid point estimates of parameters and permit full Bayesian
inferences by replacing the expectation-maximization (EM) algorithm with a corresponding
Gibbs sampling algorithm, but such an approach would of course incur the convergence
limitations of MCMC algorithms.

Our approach to the change point problem is a product partition model that is funda-
mentally different from both MCMC and HMM approaches to solving the change point
problem. It extends the work of Liu and Lawrence (1999) and Fearnhead (2006) by allowing
the data segments between change points to be fit by regression models. Moreover, it is one
of the few that uses dynamic programming-like recursions to complete the sums and inte-
grals over all the unknown parameters required in finding the normalizing constants for the
overall problem and all of its subproblems. The local nature of these calculations permits
direct Bayesian inference on the parameters of every segment of the dataset while main-
taining a manageable time and space complexity, O(N2). Thus, one important contribution
of this article is its use of a dynamic programming-like algorithm to solve the Bayesian
change point regression problem. In addition to being able to draw samples directly and
independently from the ensemble of all change point solutions, the algorithm also permits
direct Bayesian inference on the set of predictor variables in every data segment using the
exact Bayesian inference in regression (EBIR) algorithm (Ruggieri and Lawrence 2012).
The EBIR algorithm also employs a recursion to address the computational challenges
associated with the variable selection component of this problem. Together, the Bayesian
change point and variable selection algorithm capitalizes on the conditional independence
feature of the change point problem to draw inferences directly and independently from the
joint posterior space of all the unknowns of this problem. To the best of our knowledge, no
other algorithm simultaneously performs variable selection with change point analysis in a
computationally efficient manner.

The rest of this article is organized as follows. To facilitate understanding, we begin in
Section 2 by describing the Bayesian change point algorithm for a fixed set of predictor
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BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 91

variables. Section 3 describes the EBIR procedure and its integration into the Bayesian
change point algorithm, extending the algorithm to the case where each regime may be
modeled by a different subset of the predictor variables. In Section 4, we employ a simulated
dataset that acts as proof of principle that the computer code works and returns the expected
results. In Section 5, we apply the Bayesian change point and variable selection algorithm to
a δ18O proxy record of the Plio-Pleistocene. Section 6 provides discussion and conclusions.

2. METHODS: THE BAYESIAN CHANGE POINT ALGORITHM

Given the dependent variable, Y , and m known predictor variables X1, . . . , Xm, linear
regression methods are based upon the statistical model

Y =
m∑

l=1

βlXl + ε, (1)

where βl is the lth regression coefficient and ε is a random error term. The goal here is
to build a piecewise regression model whose regime boundaries are the change points. In
the context of the δ18O proxy record, the Xl’s are periodic (sinusoidal) functions whose
coefficients, βl , may or may not change from one regime to the next, as each regime will
be independently fit by a regression model.

Let N be the total number of data points, X = [X1, . . . , Xm] be the matrix of predic-
tor variables, and Y = [Y1, . . . , YN ] be the vector of response variables. Define Yi:j =
{Yi, Yi+1, . . . , Yj−1, Yj }, 1 ≤ i < j ≤ N , to be a substring (i.e., subset or regime) of the re-
sponse variables in the dataset; Xi:j is defined in a similar manner. Let σ 2 be the residual vari-
ance and {C} be the set of change points whose locations are c0 = 0, c1, . . . , ck, ck+1 = N .
The Bayesian change point algorithm is concerned with making inferences from the joint
distribution

f (Y, β, σ 2, {C} |X) =
[

k∏
i=0

f
(
Y(ci+1):ci+1

∣∣βi, σ
2
i , ci , ci+1, X(ci+1):ci+1

)

× f
(
βi

∣∣σ 2
i , ci , ci+1, X(ci+1):ci+1

)
f

(
σ 2

i

∣∣ci, ci+1, X(ci+1):ci+1

)]

×P ({C} = c0, c1, . . . , ck, ck+1), (2)

where βi = {β1, β2, . . . , βm} (regime index “i” omitted) and σ 2
i are the regression param-

eters for the ith substring. This represents a varying coefficients model where the vector
βi and σ 2

i are constant within each regime. The key to avoiding the combinatorial growth in
the number of change point solutions is to break the problem into a series of progressively
smaller subproblems, the smallest of which, the inference of a single change point, can
easily be solved. The full solution can then be found by efficiently piecing together these
solutions.

There are three steps to the algorithm:

1. Calculating the probability density of the data f (Yi,j |Xi:j ): To place a single change
point, we must first calculate f (Yi:j ) = f (Yi:j |Xi:j ) for each and every possible
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92 E. RUGGIERI AND C. E. LAWRENCE

substring of the data, Yi:j (details below). Let X = [X1, X2, . . . , Xm] be the (sub)set
of regressors included in the regression model. To facilitate the explanation, as-
sume that X is fixed (this assumption is relaxed via variable selection in Section
3). Our regression model assumes that the error terms, ε, are independent, mean
zero, and normally distributed random variables. Therefore, the likelihood function
for a substring of the data, Yi:j , is f (Yi:j |β, σ 2, Xi:j ) ∼ N (Xi:j , β, σ 2I ), where I is
the identity matrix. Conjugate priors are chosen for the prior distributions on the
vector of amplitudes, β = {β1, β2, . . . , βm}, and the error variance, σ 2. Specifically,
β is multivariate normal [β ∼ N (0, σ 2/k0)], and σ 2 ∼ Scaled − Inverseχ2(v0, σ

2
0 ),

where k0 is a scale parameter relating the variance of the regression coefficients to the
residual variance, while v0 and σ 2

0 act as pseudo data points—v0 pseudo data points
of variance σ 2

0 (essentially, unspecified training data gleaned from prior knowledge
of the problem). Putting these together, the marginal probability for a substring of
the data, Yi:j , is

f (Yi:j |Xi:j ) =
∫∫

f (Yi:j |β, σ 2, Xi:j )f (β|σ 2, Xi:j )f (σ 2|Xi:j )dβ dσ 2.

Let n be the number of data points in a substring, vn = v0 + n, β∗ =
(XT

i:jXi:j + k0I )−1XT
i:jYi:j , and sn = (Yi:j − Xi:jβ

∗)T (Yi:j − Xi:jβ
∗) + k0β

∗T β∗ +
v0σ

2
0 ). Integration yields

f (Yi:j ) = f (Yi:j |Xi:j ) =
(
v0σ

2
0

/
2
)v0/2

�(vn/2)(k0)m/2

�(v0/2)(sn/2)vn/2(2π )n/2
∣∣XT

i:jXi:j + k0I
∣∣1/2 . (3)

This quantity is calculated and then stored in memory for all possible substrings of
the data, Yi:j , with 1 ≤ i < j ≤ N. The dependence on X is hereafter suppressed.

2. Forward recursion (dynamic programming): Starting from one end of the time series,
we can find the probability of any prefix of the data, Y1:j , containing one change point
by multiplying together the probabilities of two nonoverlapping substrings [calcu-
lated in Equation (3)] and summing over all possible placements of the change point.
Let Pk(Y1:j ) = Pk(Y1:j |X1:j ) be the probability density of the first j observations of
the data containing k change points, given the regression model. When k = 1, this
gives P1(Y1:j ) = ∑j−1

v=1 f (Y1:v) × f (Yv+1:j ). The position of this first change point
has now been marginalized out; no further information about its location is needed
to solve the full problem.

To find the probability density of a prefix with two change points, P2(Y1:j ),
we multiply together the probability density of a prefix containing one change
point, P1(Y1:v), and a nonoverlapping substring that fills out the rest of the
prefix, f (Yv+1:j ) (both previously calculated), and then sum over all possible
placements of the second change point: P2(Y1:j ) = ∑j−1

v=1 P1 (Y1:v) × f (Yv+1:j ).
Again, the location of the second change point has now been marginalized
out as no further information about its position is needed. The process con-
tinues, Pk(Y1:j ) = ∑j−1

v=1 Pk−1 (Y1:v) × f (Yv+1:j ), until the full problem is solved.
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BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 93

Therefore, Pk(Y1:j ) is calculated recursively as

P1(Y1:j ) =
∑
v<j

f (Y1:v) f (Yv+1:j ), (4)

Pk(Y1:j ) =
∑
v<j

Pk−1 (Y1:v) f (Yv+1:j ), (5)

for j = 1, 2, . . . , N . Because we assume a uniform distribution on the locations
of the change points (see below), we do not yet have to factor in the probability
of a change point at position v. However, use of a nonuniform prior requires its
incorporation into the forward recursion step. Inferences concerning the unknown
parameters, including the number and locations of the change points, can be made by
sampling directly from the posterior distribution on the quantities of interest using a
stochastic backtrace algorithm.

3. Stochastic backtrace: Here, we use Bayes’ rule to draw samples directly from the
posterior distribution via a stochastic version of the dynamic programming-like
recursions that takes advantage of marginalization for each subproblem created in
the forward recursion step. Each of the posterior distributions described below has
an exact representation that is straightforward to sample from.

To have a completely defined partition function (or normalization constant),

f (Y1:N ) =
kmax∑
k=0

∑
c1,...,ck

f (Y1:N |K = k, c1, . . . , ck) × P (c1, . . . , ck|K = k)

×P (K = k), (6)

two additional quantities need to be specified: (1) a prior distribution on the number of
change points, P (K = k); and (2) a prior distribution on the locations of the change
points, P (c1, c2, . . . , ck|K = k). For (1), a priori, we place half the probability mass
on zero change points [P (K = 0) = 0.5] and assume a uniform prior on a positive
number of change points [P (K = k) = 0.5/kmax], where kmax is the maximal number
of allowed change points. For (2), we employ a noninformative uniform prior on
P (c1, . . . , ck|K = k), that is, all change point solutions with exactly k change points
are equally likely. Let Nk be the number of change point solutions with exactly k
change points, then P (c1, . . . , ck|K = k) = 1/Nk . When there are no restrictions
on the distance between adjacent change points, Nk is approximately equal to

(
N
k

)
.

This combinatorial prior directly accounts for the greater number of solutions as the
number of change points increases. Taken together, P (K = 0) = 0.5 and for k > 0,
P (K = k, c1, . . . , ck) = 0.5/(kmax) (Nk). With the normalization constant specified,
we can now draw samples of the parameters of interest:

(a) Sample a number of change points: The forward recursion calculates the density
of the entire dataset, Y1:N , given k change points, Pk(Y1:N ) = f (Y1:N |K = k).
Using Bayes’ rule, the posterior distribution on the number of change points,
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94 E. RUGGIERI AND C. E. LAWRENCE

given the data, is

f (K = k|Y1:N ) = Pk (Y1:N ) P (c1, . . . , ck|K = k)P (K = k)

f (Y1:N )
, (7)

with f (Y1:N ) defined in Equation (6).

(b) Sample the locations of the change points: Additionally, Bayes’ rule can be used
to assess the uncertainty related to the exact timing of a change. Let cK+1 = N ,
the last data point. Then, for k = K, K − 1, . . . , 1, iteratively draw samples
according to

f (ck = v|ck+1) = Pk−1 (Y1:v) f (Yv+1:ck+1 )∑
v∈[k−1,ck+1) Pk−1 (Y1:v) f (Yv+1:ck+1 )

. (8)

(c) Sample the regression parameters for the interval between adjacent change
points, ck and ck+1: Let n = ck+1 − ck , the number of data points in a subin-
terval and let β∗ = (XT

(ck+1):ck+1
X(ck+1):ck+1 + k0I )−1XT

(ck+1):ck+1
Y(ck+1):ck+1 , sn =

(Y(ck+1):ck+1 − X(ck+1):ck+1β
∗)T (Y(ck+1):ck+1 − X(ck+1):ck+1β

∗) + k0β
∗T β∗ + v0σ

2
0 ),

and vn = v0 + n. Using Bayes’ rule one final time, we obtain

f (β|σ 2) ∼ N
(
β∗,

(
XT

(ck+1):ck+1
X(ck+1):ck+1 + k0I

)−1
σ 2

)
, (9)

f (σ 2) ∼ Scaled − Inverse χ2(vn
sn/vn

). (10)

Step 1 (calculating the probability density of the data) is O(N2), the forward recursion
step is O(kN2), and the stochastic backtrace is O(kN). Therefore, the algorithm has a total
time complexity of O(kN2). In practice, the most time-consuming step is calculating the
probability of the data, which depends in part on the complexity of the regression model.

3. METHODS: VARIABLE SELECTION VIA EBIR

Bayesian approaches to variable selection focus on finding the posterior distribution
across the ensemble of candidate submodels. Approximations of the posterior space by
stepwise regressions (see Miller 2002 and references therein) can leave open the question
of local versus global optima and often do not address the uncertainty of including specific
variables. The “spike and slab” model is first introduced by Mitchell and Beauchamp (1988).
Here, the maximum a posteriori (MAP) estimator can be viewed as the “best” submodel,
but the entire, exponentially growing space needs to be searched to find this estimator.
Stochastic methods such as MCMC (Raftery, Madigan, and Hoeting 1997; Fernandez, Ley,
and Steel 2001) and Gibbs sampling (George and McCulloch 1993) attempt to address
this computational challenge. By approximating the posterior space, these approaches can
address the issue of uncertainty of including specific regressors, but leave open the question
of the length of the chain needed for convergence.

An exact representation of the posterior space for variable selection is always expo-
nential, but an efficient calculation for each of the possible submodels reduces the time
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BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 95

complexity to be similar to stochastic approximation methods (Ruggieri and Lawrence
2012). In this case, we address uncertainty without resorting to approximation techniques.

Step 1 of the Bayesian change point algorithm requires the calculation of the probability
density of the data, f (Yi:j |Xi:j ), for a fixed subset of the regressors, X, and for each
possible subinterval of the time series, Yi:j , 1 ≤ i < j ≤ N . The goal is to make inferences
from the joint distribution, f (Y, β, σ 2, {C}|X) [Equation (2)]. To relax the assumption of
a fixed set of regressors, we carry out a variable selection procedure within each possible
subinterval of the data, Yi:j . Define Am to be a vector of indicator variables for the inclusion
or exclusion of each of the predictors from the set of predictor variables being considered.
Given m predictor variables, there are 2m possible subsets of variables to consider for each
subinterval of the data, Yi:j . Inferences on subsets of regressors for each subinterval can
now be made from a more general joint distribution:

f (Y, β, σ 2, Am, {C}|X) = f
(
Y, β, σ 2, {C} |Am,X

) × f (Am|X). (11)

Once the probability density of the data has been calculated for each of the 2m possible
submodels, Am, the choice of a submodel can be marginalized out in each substring of the
data, Yi:j , via model averaging:

f (Yi:j ) =
∑

all Am

f (Yi:j |Am,Xi:j ) × P (Am|Xi:j ), (12)

where P (Am|X) is a product Bernoulli on the number of predictor variables included in
the submodel, as defined below. The large number of subintervals that exist for any time
series [O(N2)] requires an efficient model selection procedure in order for the algorithm to
be practical.

Let minc be the number of variables included in submodel Am and let mexc be the
number of excluded variables (minc + mexc = m, the total number of predictor vari-
ables). Associated with included variables is a “wide” prior variance parameter, kinc,
and associated with the excluded variables is the narrow prior variance parameter,
kexc. Let IAm

be a diagonal matrix with either kinc or kexc on the diagonal, corre-
sponding to whether or not a specific variable is included in the submodel being con-
sidered. Furthermore, define vN = v0 + N , β∗ = (XT

i:jXi:j + IAm
)−1XT

i:jYi:j , and sN =
(Yi:j − Xi:jβ

∗)T (Yi:j − Xi:jβ
∗) + β∗T IAm

β∗ + v0σ
2
0 . Finally, let pinc be the probability of

including a variable and let pexc be the probability of excluding a variable (pinc + pexc = 1).
Thus, the prior distribution on a submodel, Am, is defined as P (Am) = pminc

inc pmexc
exc . The prob-

ability density of our data now takes the following form:

f (Yi:j ) = f (Yi:j |Xi:j ) =
∑

all Am

∫∫
f (Y |β, σ 2, Am,Xi:j )f (β|σ 2, Am,Xi:j )

× f (σ 2|Am,Xi:j ) dβdσ 2P (Am|Xi:j ),

or

f (Yi:j ) = (v0σ
2
0 /2)

v0/2
�(vn/2)

�(v0/2)(2π )n/2

∑
All Am

(
p2

inckinc
)minc/2 (

p2
exckexc

)mexc/2

(sn/2)vn/2
∣∣XT

i:jXi:j + IAm

∣∣1/2 . (13)
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96 E. RUGGIERI AND C. E. LAWRENCE

The key to the EBIR algorithm (Ruggieri and Lawrence 2012) is to quickly derive
f (Y |submodel b) from f (Y |submodel a). Note how only a determinant, matrix inversion
(involved in the calculation of sn), and sum on the number of included variables, needs to
be completed for each submodel Am, as the rest of the terms in the density function are
independent of Am. Therefore, the largest computational burden involved in the calculation
of f (Yi:j ) is the evaluation of a matrix inverse and a matrix determinant. Consider a full
binary tree whose depth is the number of possible variables where one branch adds/deletes
a variable, while the other branch makes no changes to the current model. The EBIR
algorithm works through the tree, performing a calculation only when the add/delete branch
is traversed, and reduces matrix inversion from O(m2.376) by the Coppersmith and Winograd
(1990) algorithm to O(m2) and matrix determinant calculations from O(m2.376) to O(1).
Figure 1 provides visual aid with three possible variables. Each leaf on the tree holds the
probability of one submodel: “0” represents an “excluded” variable while “1” represents an
“included” variable. See Ruggieri and Lawrence (2012) for the full implementation details
of EBIR. The EBIR calculation [Equation (13)] replaces Step 1 (calculating the probability
density of the data), given above, carried out for each possible substring of the data. The
updated algorithm is described in Appendix A (online supplementary materials).

4. PROOF OF CONCEPT: A SIMULATED DATASET

A simulated dataset was generated as proof of principle that the computer code works
and numerical issues addressed so that the algorithm returns the expected results. As-
sume that we have 10 possible predictors: X1(t) = sin(2π t/20), X2(t) = sin(2π t/30),
X3(t) = sin(2π t/40), X4(t) = sin(2π t/50), X5(t) = sin(2π t/60), X6(t) = sin(2π t/70),

Figure 1. The recursive structure of the EBIR algorithm. Starting with any of the eight possible submodels
from a set of three variables (in this case, 010), a move “left” keeps the current submodel, while a move “right”
either adds or deletes the indicated variable, as appropriate. Only movements to the “right” in the tree require a
calculation to be made. The recursive structure of this tree allows for a reduction in computational complexity by
efficiently generating a child from its parent node.

D
ow

nl
oa

de
d 

by
 [

C
ol

le
ge

 O
f 

th
e 

H
ol

y 
C

ro
ss

] 
at

 0
9:

29
 0

3 
Ju

ne
 2

01
4 



BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 97

X7(t) = sin(2π t/80), X8(t) = sin(2π t/100), X9(t) = sin(2π t/150), and X10(t) = sin(2π t/200).
The dependent variable, Y , consists of 1000 randomly generated observations with four
uniformly distributed change points. Regression coefficients are obtained from a mixture
of normal distributions [0.5 × N(1,2) + 0.5 × N(−1,2)] and then Gaussian white noise
of various levels is added [∼N(0,1), N(0, 1.5), and N(0,2)]. Using MATLAB R2011a’s
built-in random number generator, the following dataset was built:

Y (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3.3115X2(t) − 0.2222X7(t) + 0.7684X8(t), 1 ≤ t < 309,

−0.1844X2(t) − 0.6663X3(t) + 0.555X4(t), 309 ≤ t < 505,

−0.1844X2(t) − 0.6663X3(t) + 0.555X4(t), 505 ≤ t < 648,

0.0468X1(t) + 2.2412X5(t) − 1.3785X7(t) + 1.5937X10(t), 648 ≤ t < 751,

2.3593X3(t) − 1.1507X5(t) − 1.3162X7(t) − 0.3304X9(t), 751 ≤ t ≤ 1000.

The Bayesian change point and variable selection algorithm was run with kmax = 10 and
the parameter settings described in Appendix B (online supplementary materials).

Five hundred samples were drawn directly from the posterior distribution according to
Step 3 (stochastic backtrace). The results for a noise level of 1.0 are shown in Figures 2
and 3. The posterior probability of selecting the proper number of change points, 4, is
>0.99 for a noise level of 1.0 and >0.90 for a noise level of 1.5; this final change point
is found less often when the noise is increased to 2.0. Figure 2 shows the recreated model
in conjunction with the actual data and added noise. The locations of the sampled change
points are indicated at the bottom of the figure. The height of the “spikes” is indicative
of the number of times a change point is selected at that exact location. Tall “spikes”
indicate relative certainty in the timing of a change point while wider “spikes” indicate
a corresponding amount of uncertainty in the timing of the change point. As the level of
noise increases, the change point locations remain accurate, but their distribution becomes

Figure 2. Simulated data and inferred model with change point locations indicated. The overall R2 for a white-
noise level of 1.0 is 0.790.

D
ow

nl
oa

de
d 

by
 [

C
ol

le
ge

 O
f 

th
e 

H
ol

y 
C

ro
ss

] 
at

 0
9:

29
 0

3 
Ju

ne
 2

01
4 



98 E. RUGGIERI AND C. E. LAWRENCE

Figure 3. Variables selected for inclusion in the simulated dataset. (a) Of the 500 sampled solutions, the heat
map displays the number of times that each variable is selected at each data point along with that variable’s true
regression coefficient; (b) the average inferred coefficient of each of the 10 possible regressors at each data point.

more spread around the true timing of the change. The overall average R2 for a Gaussian
white-noise level of 1.0 is 0.790, but drops to 0.716 for a white-noise level of 1.5, and 0.641
for a white-noise level of 2.0. A perfect recreation of the input model would yield R2 values
of 0.7811, 0.7041, and 0.6409, respectively, implying that the Bayesian change point and
variable selection algorithm is able to faithfully reproduce the input, while fitting only a
tiny amount of the added noise.

Figure 3 illustrates the results of variable selection. Figure 3(a) is a heat map displaying
the number of times that each variable was selected at each data point along with the true
regression coefficient. Small amplitude inputs (i.e., X1 in Y648:750) become overwhelmed by
the noise in the system and so they are not selected by the algorithm. As discussed by George
and McCulloch (1993), changing the parameters kinc and kexc can alter how conservative
the algorithm is in its selection. Corresponding heat maps for larger values of white noise
are structurally similar, although increases in the amount of added noise cause fewer of
the variables to be selected in each subinterval. Figure 3(b) shows the average regression
coefficient for each variable selected at each data point. These sampled coefficients match
well with their true values for the variables that are often selected [Figure 3(a)]. However,
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BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 99

the coefficient for a variable that is not often selected will be underestimated in proportion
to the number of times it was sampled when averaged across all 500 sampled solutions.

5. APPLICATION: δ18O PROXY RECORD OF THE
PLIO-PLEISTOCENE

Today, most theories of ice sheet dynamics are a variation of Milankovitch theory (1941),
which loosely states that ice sheets respond linearly to the amount of solar insolation (i.e.,
energy) received at the top of the Earth’s atmosphere at 65◦N latitude during the summer.
Thus, we can use regression to model the glacial dynamics represented in the δ18O proxy
record as a function of solar insolation.

Changes in the amount of solar insolation received by the Earth are caused by variations
in the Earth’s orbit around the Sun. This motion can be described by three parameters:
obliquity (tilt), precession (wobble), and eccentricity (ellipticity), each of which is nearly
periodic. Whereas variations in precession (∼23 kyr) and obliquity (∼41 kyr) can alter
the amount of solar insolation received during the summer at 65◦N latitude by 30 W/m2

and 15 W/m2, respectively, variations in eccentricity (∼100 kyr) alter the solar insolation
budget by less than 1 W/m2 (out of a total ∼500 W/m2). Because the eccentricity signal in
the solar insolation record is not sufficient to force the ∼100 kyr glacial cycles observed
in the δ18O proxy record after the MPT (Hays, Imbrie, and Shackleton 1976), several
alternative hypotheses have been developed to explain the emergence of 100 kyr glaciation
at this time. Here, we use the Bayesian change point and variable selection algorithm to
compare the following four theories of ice sheet formation and destruction using sinusoidal
approximations to each of the orbital components:

1. A linear response to Milankovitch forcing: Milankovitch forcing is composed of
precession, obliquity, and eccentricity. Precession is represented by a 23 kyr sinusoid,
obliquity by sinusoids at 41 and 53 kyr, and eccentricity by a triplet of sinusoids
at 95, 124, and 404 kyr. Each of these frequencies represents the strongest spectral
components for each of the orbital forcing functions (Berger and Loutre 1991; Imbrie
et al. 1992).

2. Harmonics of obliquity: The harmonics (or bundles) of obliquity hypothesis (Huy-
bers and Wunsch 2005; Liu, Cleaveland, and Herbert 2008) claims that ice sheets
terminate with every second or third obliquity cycle after the MPT, whereas ice sheets
terminated with every obliquity cycle prior to the MPT. Therefore, the second and
third obliquity cycles are represented by 82 and 123 kyr sinusoids, respectively.

3. Harmonics of precession: The harmonics (or bundles) of precession hypothesis
(Raymo 1997; Ridgwell, Watson, and Raymo 1999) claims that ice sheets grow
when summer insolation is unusually low for a full precession cycle and once estab-
lished, do not last beyond the next increase in summer insolation. Thus, ice sheets
will terminate at the fourth or fifth precession cycle. The harmonics of precession
are represented by sinusoids at 92, and 115 kyr, corresponding to the fourth and fifth
precession cycles, respectively.
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100 E. RUGGIERI AND C. E. LAWRENCE

4. Orbital inclination: Muller and MacDonald (1995, 1997) claimed that the narrow
spectral peak of orbital inclination at 100 kyr is a good match to the narrow spectral
peak at 100 kyr in the δ18O data. Therefore, we represent the orbital inclination
hypothesis as a single 100 kyr sinusoid.

The question now becomes whether or not the full models, including the regressors
that represent precession and obliquity, are necessary to model the proxy record. To reflect
the uncertainty in these theories about the inclusion of all terms in a given interval, we
allow our EBIR procedure to exclude regressors from a model to obtain a more realistic fit.
Given these four models, the sinusoids used as input to the algorithm are 23, 41, 53, 82,
92, 95, 100, 115, 123, 124, and 404 kyr. The 123 and 124 kyr sinusoids have frequencies
equivalent to three decimal places. As a result, they will be combined into a single sinusoid
for this analysis. Because the linear response of ice sheets to precession (23 kyr) and
obliquity (41 and 53 kyr) has not been questioned, these sinusoids are permitted to enter
in each of the four models described above without restriction. However, because each of
these hypotheses is exclusive of the others, any submodel containing sinusoids from two
exclusive hypotheses is eliminated from consideration. For example, a permitted submodel
cannot contain both the second harmonic of obliquity and the fourth harmonic of precession
or the 100 kyr sinusoid for orbital inclination. Consequently, our 211 possible submodels
are reduced to 112 for each possible subinterval. A priori, we assume that all submodels are
equally likely, that is, pinc = pexc = 0.5, and we set v0 = 10 and σ 2

0 = variance of the δ18O
proxy record (see Appendix B for a full description). The final parameter to specify is kmax.
While geoscientists expect at least two change points in δ18O record, there is a serious doubt
that there can be more than six change points. So, we set kmax equal to six. Additionally,
because geoscientists are primarily interested in changes in the forcing functions of the
climate system rather than the long-term cooling trend that exists in the δ18O proxy record,
we removed this long-term cooling trend from the dataset using an exponential function
before analyzing the time series [Figure 4(a)]. If one were also interested in studying
changes in trend, then additional predictor variables can be added to the regression model.

The analysis of the δ18O proxy record (Lisiecki and Raymo 2005) by the Bayesian change
point and variable selection algorithm is shown in Figures 4 and 5. Five hundred samples
are drawn directly from the posterior distribution according to Step 3 (i.e., stochastic
backtrace), to characterize the shape of the posterior space. Figure 4(b) shows the fit of our
model (averaged over the 500 samples) to the δ18O data [Figure 4(a)] with the marginal
probability of a change point indicated as “spikes” in Figure 4(c). As before, the height of
these spikes indicates the number of times that a given data point was selected as a change
point, while the width of these spikes indicates the uncertainty in the timing of a change
point. For some of the change points, the timing is relatively certain. For example, the change
point at 338 thousand years ago (ka) is well defined with 0.610 of the posterior mass at
exactly 338 ka [95% credibility limit (the Bayesian analog to a confidence interval) =
335–339 ka]. On the other hand, one of the change points identified with the MPT is
less precisely located with 39.6% of the posterior mass at exactly 788 ka (95% credibility
limit = 788–814 ka). In this analysis, the MPT is identified as a pair of change points,
with the second being bimodal and centered at 1.22 Ma. Additionally, the intensification
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BAYESIAN ANALYSIS OF THE δ18O PROXY RECORD 101

Figure 4. The δ18O proxy record of the Plio-Pleistocene with its inferred model and the posterior probability of
a change point. (a) A 5.3 million year global record of ice volume on the Earth compiled by Lisiecki and Raymo
(2005) after removing the long-term cooling trend via an exponential function. (b) The model inferred by the
Bayesian change point and variable selection algorithm. (c) The probability of a change point at a specific point
in time and the uncertainty in its location can be determined by the height and width of the “spikes.” The overall
R2 is 0.788.

of Northern Hemisphere glaciations is also bimodal, with 5.6% of its probability mass
centered at 2.73 Ma and the remaining 94.4% centered at ∼2.82 Ma.

Of course, since the algorithm draws change points jointly from their posterior dis-
tribution, this analysis is not restricted to an examination of marginal distributions. This

Figure 5. Heat map of the variables selected to fit the δ18O proxy record.
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102 E. RUGGIERI AND C. E. LAWRENCE

is especially important if the change point locations are not independent of one another,
which can call into question the convergence of an MCMC algorithm or the “optimality”
of a greedy solution. In general, any algorithm that adds, subtracts, or alters one change
point at a time may fail to find all sets of plausible solutions.

The double peak around 1.22 Ma suggests that the posterior distribution of change
points may contain more than one class of favored solutions. Recall that in a Bayesian
setting, inferences are based on the posterior probability distribution of the unknown
parameters. Accordingly, there may be more than one location in the posterior space that
has substantial posterior mass, as has been previously discovered through clustering in
another discrete high-dimensional setting, the prediction of RNA secondary structures
(Ding, Chan, and Lawrence 2005). Furthermore, since the most probable point estimate
(i.e., the MAP) is optimal under a zero-one loss function, it is likely to have a low
probability in high-dimensional spaces and may be located far from all regions that have
high probability mass in the posterior space (Carvalho and Lawrence 2008). In such cases,
alternative estimators, such as centroid estimators, are likely to return more representative
estimates (Carvalho and Lawrence 2008). Following the lead of Ding, Chan, and Lawrence
(2005), we investigate the potential of a multimodal posterior space by clustering our 500
joint samples of change point solutions using a k-means clustering algorithm (Seber 1984)
with five clusters to obtain a better understanding of the shape of the posterior space.
Each cluster is characterized by its centroid estimator (Carvalho and Lawrence 2008) and
the credibility limits around these estimators, which represent the smallest hypersphere
around the centroid that contains 95% of the posterior space (Webb-Robertson, McCue,
and Lawrence 2008; Newberg and Lawrence 2009) (Table 1). Choosing fewer clusters acts
to combine clusters 1–4, while choosing more clusters acts to split the existing clusters
into nearly identical groups. As shown in Table 1, there are three interesting patterns to
note:

1. The first three change point locations in all five clusters are essentially the same.

2. Cluster 5 has change points at 1.24 Ma and 1.73 Ma, while the other clusters lack
these change points. In fact, for each sampled solution where there is a change point
at 1.24 Ma, there is also a change point at 1.73 Ma, and very rarely is the 1.73 Ma
change point included in any other sample. Marginally, these two points are a part of
bimodal pairs.

3. The change points that identify the intensification of Northern Hemisphere glaciations
at 2.73 Ma are almost always paired with change points at 1.21 and 1.49 or 1.50
Ma, which are the bimodal counterparts to the change points at 1.24 and 1.73 Ma
described above.

Thus, the clustering of samples from the joint posterior distribution clearly illustrates
the multimodality of the posterior space. Clustering algorithms such as k-means may find
local rather than globally optimal solutions. However, multiple runs were conducted with
little difference in the results.
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Of the 500 sampled solutions, Figure 5 indicates the number of times that each variable
was selected for inclusion at each data point. From this figure, several conclusions can be
drawn:

1. The 41 kyr sinusoid representing obliquity is selected for every data point in at least
499 of the 500 sampled solutions.

2. While precession (23 kyr) may contribute more to solar insolation than any other term,
it shows up strongly in the posterior only in the most recent subinterval (0–338 ka),
with a posterior probability near 1, and in the MPT (790 ka to 1.22 Ma), with a
posterior probability of roughly 0.8.

3. Terms exclusively from the Milankovitch model (95 and 404 kyr) are absent in the
posterior except for the short interval from about 575 to 790 ka.

4. Before the onset of permanent glaciers in the Northern Hemisphere (∼2.8 Ma),
only obliquity (41 kyr) is inferred by any of the 500 sampled solutions. Thus, none
of the four models are appropriate for fitting this “41 kyr world” prior to 2.8 Ma.
Additionally, with the exception of the 92 kyr sinusoid during 1.5–2.8 Ma, the 41 kyr
sinusoid is the only frequency regularly chosen for the entire period prior to the MPT.
Therefore, the MPT can be viewed as a period of transition from a “41 kyr world” to
a more complex subharmonic model involving longer wavelengths, previously called
the “100 kyr world.”

5. The orbital inclination model (100 kyr) was not chosen in more than 1 of 500 sampled
solutions at any point in time. Thus, the representation of the late Pleistocene glacial
era as a “100 kyr world” is not supported in our findings.

6. DISCUSSION AND CONCLUSIONS

The Bayesian change point and variable selection algorithm makes two important con-
tributions to the study of change point problems: (1) the algorithm generalizes the dynamic
programming Bayesian change point algorithms of Liu and Lawrence (1999) and Fearnhead
(2006) to include regression analysis; and (2) the algorithm combines variable selection
with a change point technique to provide increased flexibility in statistical modeling. While
other Bayesian algorithms may be able to perform change point analysis in a general re-
gression setting, we know of no other algorithm that simultaneously performs variable
selection. The EBIR algorithm facilitates allowing variables to be added or deleted as the
data suggest and thus yields a more realistic model of the underlying phenomenon, espe-
cially at the boundaries of two regimes. The algorithm is therefore well suited to study
datasets where the locations of the change points, the parameters of the model, and the
included predictor variables are suspected to change through time, such as the δ18O proxy
record of the Plio-Pleistocene. Two major changes to this record have been thoroughly
discussed in the literature: the intensification of glaciations in the Northern Hemisphere
around 2.7 Ma and the MPT around 1 Ma, where not only did the glaciations increase in
magnitude, but they changed in frequency as well. Thus, the former was a change in the
parameter values, while the latter was a change in the included predictor variables.
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The Bayesian change point algorithm is built upon a product partition model introduced
by Barry and Hartigan (1993) using the same recursive procedure as its least-square coun-
terpart (Auger and Lawrence 1989; Ruggieri et al. 2009), but remedies its shortcomings
related to uncertainty estimates. The recursions that Barry and Hartigan (1993) used to
obtain an exact solution to the change point problem are similar to those proposed here,
except that their recursions stem from both ends of the dataset, rather than just one end.
Their exact algorithm is O(N3) as opposed to our O(N2) exact algorithm because of dif-
ferences in how the parameter values are calculated. First, instead of sampling, Barry and
Hartigan (1993) calculated an expected value at each data point based on the probability
that a given substring is included in the partition. Since there are O(N2) possible substrings,
the parameter estimates are O(N × N2) = O(N3) instead of O(kN), as in our approach. The
R package “bcp” (Erdman and Emerson 2008) uses an MCMC approximation to Barry and
Hartigan (1993) that is O(N) per iteration. A second difference between the algorithms is
that Barry and Hartigan (1993) only detected a change in the mean, whereas our Bayesian
regression model characterizes the full posterior solution in all its potential complexity,
including multiple high posterior regions. “bcp” shares this limitation.

Given the probabilistic framework of the Bayesian change point algorithm, inferences
can now be made about the number of change points, their locations, and the parameters of
the regression model. Moreover, we can also relax the assumption of a fixed set of predictors.
These inferences replace the need for an arbitrary choice of the number of change points
and the use of maximum likelihood estimates for the parameters of the regression model
observed in the least-square setting. Four of the change points identified in this analysis are
similar to those found by Ruggieri et al. (2009), specifically, the change points centered
at ∼338, 790, 1208, and 2820 ka. The middle two change points correspond to a pair of
changes that surround the MPT, while the final change point is consistent with the onset of
Northern Hemisphere glaciation. Also, by considering the ensemble of sampled solutions,
we now have an indication about the abruptness of change. Uncertainty in the placement
of a change point indicates the presence of a gradual change.

The Bayesian change point algorithm in its current form is an example of interrupted
regression (Marsh and Cormier 2001) and thus does not have a continuity constraint.
Therefore, the algorithm allows for both gradual and abrupt changes to take place. Given
the debate in the geosciences community concerning abrupt versus gradual changes, a
model of this form is well suited to the analysis of glacial cycles. If continuity is desired,
spline regression techniques can instead be used, but the problem then becomes nonlinear
in its parameters and approximation techniques must instead be used (Marsh and Cormier
2001). The model selection procedure outlined here, and more generally the change point
algorithm itself, is not restricted to sinusoidal functions. The algorithm can be adapted to
fit simpler (i.e., the mean) or more complex functions so long as the density function for
the residual error can be calculated in any subinterval for all allowable submodels.

Simulation results (Figures 2 and 3) show highly accurate placement of change points, but
a conservative variable selection algorithm. Of the variables that are chosen, their inferred
amplitudes are quite similar to their true values. On the other hand, the contributions of
some variables are overwhelmed by the added noise and therefore are not selected. Longer
intervals between change points will, in general, lead to more accurate inferences.

The results of the Bayesian change point and variable selection algorithm on the δ18O
proxy record of the Plio-Pleistocene can be sensitive to the values chosen for the prior
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parameters v0 and σ 2
0 , an effect not observed in the simulated data. Specifically, the larger

the product of these two parameters, the fewer is the number of change points chosen by
the algorithm. The prior distribution on the error variance is analogous to adding pseudo
data points of a given residual variance and helps to bound the likelihood function. In
the maximum likelihood setting, this effect is similar to penalized likelihood techniques
(Ciuperca, Ridolfi, and Idier 2003). As noted by Fearnhead (2006), the choice of prior
distribution can affect the number, but not the distribution of the change point positions.
See Appendix B for a full description of these parameters.

Overall, six change points fit 78.8% of the variance in the δ18O proxy record of Lisiecki
and Raymo (2005). By clustering the 500 sampled solutions, we obtain a clearer under-
standing of the shape of the posterior space. In particular, we find that our bimodal change
point locations are not independent. While the centroids of the clusters for the three change
points since the MPT are nearly identical, it appears that our change points prior to the MPT
tend to occur in pairs. For example, a change point at 1.24 Ma is paired with a change point
at 1.73 Ma, while a change point at 1.21 Ma is paired with a change point at ∼1.50 Ma.

The number of samples can be kept small (relative to an MCMC approach) because these
samples are drawn directly and independently from the posterior distribution. With MCMC
algorithms, including those designed to address the change point algorithm, convergence
is required to obtain samples from the target distribution, but rigorous procedures to assure
such convergence are unavailable. This stands in stark contrast with the algorithm presented
in this article. Since all required sums and integrals can be simultaneously completed, all
samples of all unknowns from this algorithm are drawn directly and independently from
the target distribution. Samples drawn directly from their posterior distributions avoid the
convergence issues associated with MCMC algorithms and permit direct assessment of
uncertainly in the models, parameter values, and hidden variables.

The models being used to study the δ18O proxy record are obviously a simplification
of the real-life phenomena associated with the Earth’s glacial system. However, capturing
the dominant periodicities in the proxy record and determining when they change is of
importance to geoscientists as they often describe ice volume in terms of glacial cycles
(see, e.g., Raymo 1997; Ridgwell, Watson, and Raymo 1999; Huybers and Wunsch 2005).
A more complete model could take into account local autocorrelations in the data, time-
varying amplitudes and phases, and uncertainties in the dating of the proxy record, which
could account for some of the nonstationarities in the data.

In the post-MPT era, the strength of the contributions of each term is not specified by
the authors of the four theories being compared. Because a regression model is used for
this analysis, each of the models attempts to describe the full pattern of variation in the
δ18O record, rather than solely describing the timing or frequency of deglaciations as in
their original formulations. Thus, these models may overspecify the intent of their authors.
Accordingly, attention is focused on the inclusion/exclusion of model components.

Given the omnipresence of an obliquity term in the δ18O record, it is perhaps better to
think of the interval before the onset of continent-sized glaciers in the Northern Hemisphere
around 2.7 Ma as an interval that is exclusively described by obliquity rather than a distinct
“41 kyr world.” The interval between 2.7 Ma and the MPT appears to be a transitional period
in which the subharmonics of precession terms begin to play an important role. After the
MPT, models that include multiples of the 41 kyr obliquity signal and the 23 kyr precession
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signal dominate, running counter to the concept of a “100 kyr world” described as a single
100 kyr glacial cycle. Together, these findings support the notion that the MPT represents a
transition from a glacial regime that responded linearly to the obliquity component of solar
insolation to a subharmonic glacial regime that mechanistically has been described by the
nonlinear phase-locking models proposed by Tziperman et al. (2006). The nonlinear phase-
locking models allow the frequency of individual glacial cycles to change through time
due to variations in insolation forcing and can account for the presence of both obliquity
and precession subharmonics found in the proxy record. Given that none of the existing
theories by themselves are sufficient to describe the ice volume proxy data after the MPT,
further modeling, perhaps including proxies for other components of the system such as
carbon dioxide and methane, will be required to understand the evolution in the Earth’s
glacial system over the last five million years.

SUPPLEMENTARY MATERIALS

1. MATLAB code for the Bayesian change point and variable selection algorithm
(Bayes Chgpt VS.zip). This file contains the MATLAB code (main script and sup-
porting functions) needed to run the algorithm described in this article. Also included
are the two datasets (simulation and δ18O proxy record) described in this article and
an additional small simulation suitable for a quick review. A detailed readme file
(README.txt) describes each of the functions and datasets included in the .zip file
as well as run times for each of the datasets.

2. Appendix A: The Bayesian change point and variable selection algorithm— im-
plementation details of the combined Bayesian change point and variable selection
algorithm.

3. Appendix B: Parameter settings for the Bayesian change point and variable selection
algorithm—a detailed description of each of the parameters, their default values, and
discussions on how changes in these values may affect results.

4. Appendix C: Glossary of terms—a brief description of all variables used in the
article.
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